
254 ! Programming Language Explorations

Swift errors represent recoverable situations. Errors belong to any type conforming to the
protocol2 Error. Functions that may throw errors—known as throwing functions—must
declare this fact by placing the keyword throws (see second and third in the example
above) after its parameter list. Calls to throwing functions must be marked with try. Errors
are caught in a do-catch statement; uncaught errors are propagated to the surrounding
scope. You can, if desired, convert an error to an optional by invoking try? f(), producing
the (wrapped) result of the call, if any, or nil if the f throws.

12.4 OPERATORS

Just as Swift does not bake in its basic types but instead defines them in its standard library,
so too does it define operators as regular functions within the library. The standard library
defines a rich set of operators, including the prefix operators ! (logical not), ~ (bitwise
not), + (unary plus), and - (unary negation). The binary operators, from highest to lowest
precedence, follow:
Operator(s) PrecedenceGroup Asc Description
<< >> BitwiseShift None left shift, right shift
* / %
&* &

Multiplication L multiply, divide, remainder, multi-
ply w/overflow, bit-and

+ - &+
&- | ^

Addition L add, subtract, add w/overflow, sub-
tract w/overflow, bit-or, bit-xor

..< ... Range None half-open range, closed range
is
as as? as!

Casting L type check, cast, cast as optional,
unwrap cast

?? NilCoalescing R nil coalesce
< <= > >=
= !=
=== !==
~=

Comparison None less, less or equal, greater, greater
or equal, equal, not equal, identical,
not identical, pattern match

&& LogicalConjunction L (short-circuit) logical and
|| LogicalDisjunction L (short-circuit) logical or
?: Ternary R conditional
= *= /= %=
+= -= <<= >>=
&= |= ^=
&&= ||=

Assignment R assignment

As in Elm, Swift operators are just functions, so you can define your own implementations
of them on your own data types. We’ve done this below in our recurring vectors example,
to which we’ve taken the liberty to add a prefix unary negation operator:

import Foundation

struct Vector: CustomStringConvertible {
let i: Double
let j: Double

2We’ll get to details of protocols shortly; for now, think of them as interfaces in Java or Go.

Swift ! 255

func magnititude() -> Double {
return sqrt(i * i + j * j)

}

var description: String {
return "<\(i),\(j)>"

}
}

func + (left: Vector, right: Vector) -> Vector {
return Vector(i: left.i + right.i, j: left.j + right.j)

}

func * (left: Vector, right: Vector) -> Double {
return left.i * right.i + left.j * right.j

}

prefix func - (v: Vector) -> Vector {
return Vector(i: -v.i, j: -v.j)

}

let u = Vector(i: 3, j: 4)
let v = Vector(i: -5, j: 10)
assert(u.i == 3)
assert(u.j == 4)
assert(u.magnititude() == 5)
assert(String(describing: u + v) == "<-2.0,14.0>")
assert(u * v == 25)
assert(String(describing: -v) == "<5.0,-10.0>")

You can even define your own operators. There are quite a few rules surrounding which
characters can appear in these custom operators (see [4] for full details). Among these
rules: custom operator names must be made up of “symbol”-like characters, operators con-
taining dots (.) must begin with a dot, a lone question mark is not an operator, and no
postfix operator may begin with a question mark or exclamation mark.
Let’s quickly run through the steps in creating a couple custom operators. We must declare
the operators before defining them, assigning binary operators to a precedence group (either
an existing group, defined in the Swift Standard Library, or one we define ourselves) and
assigning an associativity (left, right, or none). Here we’ve created an infix ~|*|~ that
binds more tightly than addition but less tightly than multiplication, by first creating a new
precedence group:

precedencegroup JustForFun {
higherThan: AdditionPrecedence
lowerThan: MultiplicationPrecedence
associativity: left

}

256 ! Programming Language Explorations

infix operator ~|*|~ : JustForFun
postfix operator ^^

func ~|*|~ (x: Int, y: Int) -> Int {
return 2 * x + y

}

postfix func ^^ (x: Int) -> Int {
return x - 2

}

assert(8^^ ~|*|~ 3 == 15)

12.5 PROTOCOLS

Now let’s return to Swift’s type system. We’ve seen five of the six kinds of types so far:
structures (including numbers booleans, strings, arrays, and dictionaries), enumerations (in-
cluding optionals), classes, tuples, and functions. The sixth, protocols, is Swift’s analog of
Java’s interfaces and Ruby’s mixins. A protocol specifies certain requirements that struc-
tures, enumerations and classes that wish to adopt the protocol must conform to.
For our introductory example, we define a protocol Summarizable for things with sum-
maries, give a struct and enum that adopt it, and invoke the summary property through
variables declared with the protocol type:

import Foundation

protocol Summarizable {
var summary: String { get }

}

struct Circle: Summarizable {
var radius = 1.0
var summary: String {return "Circle with radius \(radius)"}

}

enum Direction: Int, Summarizable {
case north, east, south, west
var summary: String {return "Bearing \(90 * self.rawValue)"}

}

let a: [Summarizable] = [Circle(radius: 5), Direction.west]
assert(a[0].summary == "Circle with radius 5.0")
assert(a[1].summary == "Bearing 270")

The adopted protocols appear in the type declaration, comma separated, following any
superclass specification (for classes) or raw type specification (for enums). The protocol
definition itself defines a number of requirements for not only properties but initializers and
functions (methods) as well.

