
80 ⌅ Programming Language Explorations

5.2 THE BASICS

Ruby has variables, assignments, the usual control structures, and even exceptions. As in
Python, there are no primitives, only objects; you can find the unique identifier of any
object x with x.object_id. Every object has a unique class, which can be found with
x.class:

fail unless nil.class == NilClass
fail unless false.class == FalseClass
fail unless true.class == TrueClass
fail unless 3.class == Integer
fail unless (2**1000).class == Integer
fail unless 2.0.class == Float
fail unless :dog.class == Symbol
fail unless "dog".class == String
fail unless (1..5).class == Range
fail unless [1,2,3,4,5].class == Array
fail unless {x: 1, y: 2}.class == Hash
fail unless {�x� => 1, �y� => 2}.class == Hash

Ruby features a large number of built-in classes. A class can have at most one su-
perclass. Superclasses allow us to express IS-A relationships: each of the expressions
5.is_a? Integer, 5.is_a? Numeric, 5.is_a? Object, and 5.is_a? BasicObject evalu-
ate to true. Figure 5.1 shows part of this hierarchy.

Module
Class

NilClass
FalseClass
TrueClass
Numeric

Integer
Float
Rational
Complex

Time
String
Symbol

Array
Hash
Struct
Regexp
MatchData
Range
IO

File
Dir
Enumerator
Random
Binding
Encoding

Proc
Method
UnboundMethod
Thread
ThreadGroup
ConditionVariable
Queue

SizedQueue
Mutex
Fiber
Monitor
TracePoint
RubyVM
Exception

BasicObject

Object

Figure 5.1 Part of the standard class hierarchy in Ruby

Like Python, Ruby classifies floating point numbers di�erently than integers, and allows
integer values to grow as large as available memory will allow them to grow: computing
2 ** 100 happily produces 1267650600228229401496703205376. The language is “strongly
typed” in the sense of allowing very few implicit coercions: you can’t, for example, add
strings and numbers. But everything can be coerced to a boolean. Like Lua, and very
unlike Python, the only expressions that are falsy are false and nil.

