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5.2 THE BASICS

Ruby has variables, assignments, the usual control structures, and even exceptions. As in
Python, there are no primitives, only objects; you can find the unique identifier of any
object x with x.object_id. Every object has a unique class, which can be found with
x.class:

fail unless nil.class == NilClass
fail unless false.class == FalseClass
fail unless true.class == TrueClass
fail unless 3.class == Integer
fail unless (2**1000).class == Integer
fail unless 2.0.class == Float
fail unless :dog.class == Symbol
fail unless "dog".class == String
fail unless (1..5).class == Range
fail unless [1,2,3,4,5].class == Array
fail unless {x: 1, y: 2}.class == Hash
fail unless {�x� => 1, �y� => 2}.class == Hash

Ruby features a large number of built-in classes. A class can have at most one su-
perclass. Superclasses allow us to express IS-A relationships: each of the expressions
5.is_a? Integer, 5.is_a? Numeric, 5.is_a? Object, and 5.is_a? BasicObject evalu-
ate to true. Figure 5.1 shows part of this hierarchy.
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Figure 5.1 Part of the standard class hierarchy in Ruby

Like Python, Ruby classifies floating point numbers di�erently than integers, and allows
integer values to grow as large as available memory will allow them to grow: computing
2 ** 100 happily produces 1267650600228229401496703205376. The language is “strongly
typed” in the sense of allowing very few implicit coercions: you can’t, for example, add
strings and numbers. But everything can be coerced to a boolean. Like Lua, and very
unlike Python, the only expressions that are falsy are false and nil.


