
102 ⌅ Programming Language Explorations

Here’s the Julia version of a script we saw a while ago in Python:

function writerule(selector; options...)
println("$selector {")
for (prop, value) in options

println(" $(replace(string(prop), "_", "-")): $value;")
end
println("}")

end

writerule("h1", font_family="Helvetica", size="20px")
writerule("p.error", color="red", margin="16px", padding="0")

Rather than having only global or function scopes, Julia’s scoping regions coincide with
the following constructs: function bodies, while and for loops, and blocks introduced with
try, catch, finally, let, and type. Variables introduced in a scope are visible to nested
scopes, and shadowing is permitted. We introduce new variables into the current scope
with local or const; function parameters are automatically made part of the function
body scope. If you assign to a variable without marking it local, a new local is introduced
in the current scope unless it has been marked local or global in an enclosing scope.
Marking a variable global is required to allow writing to a global variable in an “inner”
(non-global) scope.

a, b, c = 1, 2, 3 # three globals
(function ()

a = 10 # introduces local and shadows
global b = 20 # overwrites global
d = 10c + 10 # new local, reading global
local e = 5
while true

e = 50 # outer e because marked local
f = 60 # local to while loop!
break

end
@assert (a,b,c,d,e) == (10,20,3,40,50)
@assert (try f catch -1 end) == -1

end)()
@assert (a,b,c) == (1,20,3)

Finally, Julia has a special rule for variables in comprehensions: new variables are created
for each iteration. Co�eeScript, in contrast, iterates with existing variables! Let’s com-
pare:
# Julia
julia> x = 0
julia> [x^2 for x in 0:9]
10-element Array{Int64,1}
julia> x
0

# CoffeeScript
coffee> x = 0
coffee> (x**2 for x in [0..9])
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
coffee> x
10

That’s it for the basics. Julia’s type system goes well beyond anything we’ve seen up to this
point, so we’ll devote the next section to it.


