
Julia ⌅ 103

6.3 TYPES

Julia’s type system will remind you more of Python’s and Ruby’s than JavaScript’s: there’s
no distinction between primitive and reference types, types are themselves objects (so there’s
a type called Type), types are organized into a hierarchy (though single-inheritance only),
there are separate types for integers and floats, and you can define your own types. Julia’s
basic types go a bit further, distinguishing signed and unsigned integers, providing types
for numbers of various bit lengths, and providing a rational number type.1

We show a part of the hierarchy of Julia’s built-in types in Figure 6.1. Julia adds several
typing concepts we’ve not yet seen: abstract types2, parametric types, and union
types. These are new and interesting concepts for us, so we’ll look at each in detail.

Number
Real

Integer
Bool
Signed

Int8
Int16
Int32
Int64
Int128

Unsigned
UInt8
UInt16
UInt32
UInt64
UInt128

BigInt
Rational{T<:Integer}
AbstractFloat

Float16
Float32
Float64
BigFloat

Irrational{sym}
Complex{T<:Real}

Symbol
Char
AbstractString

String
Text{T}
Nullable{T}
Pair{A, B}
AbstractArray{T,N}

DenseArray{T,N}
Array{T,N}
BitArray{T,N}
SharedArray{T,N}

Range{T}
FloatRange{T<:AbstractFloat}
OrdinalRange{T,S}

StepRange{T,S}
Associative{K, V}

Dict{K, V}
Regex
RegexMatch
Type{T}

DataType
TypeConstructor
Union

Void
Expr

Any

Figure 6.1 A few of the built-in Julia types

6.3.1 Abstract Types

Every type in Julia is either abstract or concrete. Every value has a single concrete type;
for example, 2.54 has the type Float64. Let’s explore a few more:

1You can find details of these various numeric types in Appendix A.
2Python does “support” the notion of an abstract class through operations in its abc library module,

but Julia o�ers support for the concept directly in the language itself.

104 ⌅ Programming Language Explorations

@assert typeof(3) == Int64
@assert typeof(0x22) == UInt8
@assert typeof(0xFA31) == UInt16
@assert typeof(false) == Bool
@assert typeof(�\u263a�) == Char
@assert typeof("Hello") == String
@assert typeof(BigInt(72)^3897) == BigInt
@assert typeof(:hello) == Symbol
@assert typeof(r"\d+(\.\d+)") == Regex
@assert typeof(Float64) == DataType
@assert typeof(DataType) == DataType

Abstract types do nothing more than generalize other types; for example, the abstract
type AbstractFloat generalizes the four concrete types Float16, Float32, Float64, and
BigFloat. Calling typeof will never produce an abstract type, but you can use isa to check
“membership” in an abstract type:

@assert typeof(88) == Int64
for t in [Int64, Integer, Signed, Real, Number, Any]

@assert isa(88, t)
end

In Julia, only abstract types can have subtypes; in fact, in Figure 6.1, all leaf types are
concrete and all non-leaf types are abstract.3 We can explore the type system with the
built-in methods super and subtypes (which do what you’d expect), and the <: operator,
which determines whether one type is a descendant of another.

@assert supertype(Int32) == Signed
@assert supertype(Signed) == Integer
@assert supertype(Integer) == Real
@assert supertype(Symbol) == Any
@assert Set(subtypes(Type)) == Set([DataType, TypeConstructor, Union])

@assert Float64 <: Real
@assert isa(subtypes(Type), Array)
@assert isa(Array, Type)

Let’s implement our own abstract and concrete types. We’ll do so by directly translating
our little animals script from Python and Ruby. We create an abstract type Animal, and
three concrete subtypes. As before, all animals speak the same way, but each makes its own
sound:

abstract Animal
speak(a::Animal) = "$(a.name) says $(sound(a))"

type Horse <: Animal
name

end
sound(h::Horse) = "neigh"

3This is not the case in every language. Plenty of other languages allow concrete types to have subtypes.

Julia ⌅ 105

type Cow <: Animal
name

end
sound(c::Cow) = "moooo"

type Sheep <: Animal
name

end
sound(s::Sheep) = "baaaa"

s = Horse("CJ")
@assert speak(s) == "CJ says neigh"
c = Cow("Bessie")
@assert speak(c) == "Bessie says moooo"
@assert speak(Sheep("Little Lamb")) == "Little Lamb says baaaa"

The Julia version looked much di�erent than before! We did not create classes, nor did we
embed speak and sound inside the type declarations. We did, however, write three distinct
sound implementations. When the expression sound(a) is executed, Julia will dispatch to
the correct implementation based on the type of a. In Julia’s terminology, sound is a generic
function with three separate methods. The function methods reports the methods for a
generic function, as we show here in the REPL:
julia> sound
sound (generic function with 3 methods)

julia> methods(sound)
3 methods for generic function "sound":
sound(h::Horse)
sound(c::Cow)
sound(s::Sheep)

6.3.2 Parametric Types

Julia types can be parameterized by other types and certain other values. We can get a feel
for these types by studying a few examples:

@assert typeof(1:10) == UnitRange{Int64}
@assert typeof(0x5 // 0x22) == Rational{UInt8}
@assert typeof(5 // 34) == Rational{Int64}
@assert typeof(8.75im) == Complex{Float64}
@assert typeof(e) == Irrational{:e}
@assert typeof([5,3]) == Array{Int64,1}
@assert typeof([3, "abc"]) == Array{Any, 1}
@assert typeof([]) == Array{Any, 1}
@assert typeof([1 0; 0 1]) == Array{Int64, 2}
@assert typeof(Set(4)) == Set{Int64}
@assert typeof(Set([�3�, �$�])) == Set{Char}

106 ⌅ Programming Language Explorations

To distinguish sets of integers from sets of characters, Julia defines a parametric type
called Set{T} whose parameter T can be any type. Parameters can have restrictions as
well. Rational numbers, for example, can have UInt8 or Int64 components but not string
components, so Julia provides the type Rational{T<:Integer}, restricting T to a descen-
dant type of Integer. You’ll notice several families of parametric types in Julia, including
those for sets, arrays, ranges, and complex numbers.
Julia’s array type is parameterized not only by the type of its elements but by its dimen-
sion. So the type of one-dimensional integer arrays di�ers from the type of two-dimensional
integer arrays. Here are some examples of arrays:

a =

S

WWU

10
20
30
40

T

XXV b =
#

5 3 7
$

c =
5

1 0 9
0 1 6

6

Here a is written in Julia as [10,20,30,40] and is a one-dimensional array, or vector, of
type Array{Int64,1}. Array b is written [5 3 7] (note spaces instead of commas), and is a
1◊3 (one row, three columns) two-dimensional array, or matrix, of type Array{Int64,2}.
Array c is a 2 ◊ 3 array, also with type Array{Int64,2}, and is written [1 0 9; 0 1 6].
Higher dimensional arrays have no special syntax, though they can be constructed with
comprehensions, e.g., [i+j+k for i=1:4, j=1:3, k=1:5].
In an n-dimensional array, the expression a[e

1

, e
2

, ...en] will select a single element from the
array when each of the indexes ei are integers. However, the index expressions can also be
ranges or vectors, allowing some very interesting slices to be computed:

a = [11 12 13 14; 21 22 23 24; 31 32 33 34]

@assert a[2,3] == 23 # element in row 2, col 3
@assert a[2,2:4] == [22,23,24] # row 2, cols 2 through 4
@assert a[1:3,3] == [13; 23; 33] # rows 1 through 3 of col 3
@assert a[3,1:end] == [31,32,33,34] # row 3, all elements
@assert a[3,:] == [31,32,33,34] # row 3, all elements
@assert a[2,[1;3;4]] == [21,23,24] # row 2, cols 1, 3, 4
@assert a[[1;3],[1;4]] == [11 14; 31 34] # very disjointed subarray
@assert a[7] == 13 # enumerates by columns

Julia has hundreds of built-in methods for processing arrays, including length(A) for the
number of elements in A, ndims(A) for the number of dimensions, and size(A) for a tuple
of its dimensions. Some construct new arrays:

@assert zeros(Int64, 3) == [0, 0, 0]
@assert zeros(Int64, 2, 2) == [0 0; 0 0]
@assert ones(Int64, 3, 2) == [1 1; 1 1; 1 1]
@assert eye(Int32, 3) == [1 0 0; 0 1 0; 0 0 1]
@assert fill(5, 1, 4) == [5 5 5 5]
@assert transpose([1 3; 2 4]) == [1 2; 3 4]
@assert [1 3; 2 4]� == [1 2; 3 4] # postfix � transposes
@assert fill(10, 3, 1) == [10 10 10]� # 2d column array!
@assert [2x for x in 1:5] == [2,4,6,8,10]

Julia ⌅ 107

Many arithmetic operations extend to arrays. Array addition and subtraction (and a few
other operations) are defined element-by-element, but multiplication, division, and exponen-
tiation (and a few others) are not. Where an operation does not work element-by-element,
a “dotted” version of the operator does work that way:

a = [1 2 3; 4 5 6; 7 8 9]
b = [1 0 0; 0 2 0; 9 9 9]

@assert a + b == [2 2 3; 4 7 6; 16 17 18]
@assert a * 2 == [2 4 6; 8 10 12; 14 16 18]
@assert a * b == [28 31 27; 58 64 54; 88 97 81] # Matrix multiply
@assert a .* b == [1 0 0; 0 10 0; 63 72 81] # Elementwise mul

@assert exp2(a) == [2.0 4.0 8.0; 16.0 32.0 64.0; 128.0 256.0 512.0]

Julia has a vast number of built-in functions useful in the field of linear algebra, includ-
ing cross product; eigenvalue computation; Hessenberg and singular value decompositions;
Givens rotations; computations of transpositions, determinants, triangles and diagonaliza-
tions; and a large number of factorizations. Dozens more methods are included in the stan-
dard library packages Base.LinAlg.BLAS and Base.LinAlg.LAPACK.

6.3.3 Sum and Product Types

Julia allows us to combine types T
1

and T
2

in an “algebraic” fashion to produce two new
types, T

1

+ T
2

and T
1

◊ T
2

. The sum type contains all the values from both types, while
the product type contains pairs whose first element is from T

1

and the second from T
2

.
Let’s build up these new types from UInt8s and Bools:

Sum Product

Julia Type
Union{UInt8, Bool} Tuple{UInt8, Bool}

Values 0, 1, ... , 254, 255, false, true (0,false), (0,true),
(1,false), (1,true), ...
(255,false), (255,true)

Here are union types in action:

u = Union{UInt8, Bool} # A new type
@assert typeof(u) == Union
@assert isa(u, Type) # A union type is a type

@assert isa(0x08, u) # UInt8 values belong
@assert isa(false, u) # Boolean values belong
@assert isa(true, u)
@assert !isa(256, u) # Not a UInt8, does not belong

and tuples:

108 ⌅ Programming Language Explorations

t = Tuple{UInt8, Bool} # a tuple type
@assert typeof(t) == DataType # tuple types aren�t special
@assert isa(t, Type) # tuple types are types

@assert isa((0x08, false), t) # tuples of the right type belong
@assert isa((0x7A, true), t)
@assert !isa((3, "wrong"), t) # tuples of the wrong type do not
@assert !isa(0x25, t) # non-tuples do not belong

You can remember the di�erence between sum types and product types by noting the
following. There are 256 values in UInt8 and 2 in Bool. The union (sum) type has 256+2 =
258 values while the tuple (product) type has 256 ◊ 2 = 512.
Sums and products are not limited to two constituent types:

3 component types
@assert typeof((4, false, [])) == Tuple{Int64, Bool, Array{Any, 1}}
@assert isa(false, Union{Int64, Bool, Array{Any, 1}})

1 component type
@assert typeof((5,)) == Tuple{Int64}
@assert isa(false, Union{Bool})
@assert Bool != Tuple{Bool} # Because false != (false,)
@assert Bool == Union{Bool} # Do you see why?

No component types
@assert typeof(()) == Tuple{}

The type Union{} has no values (there are no underlying values to collect) while Tuple{}
has exactly one, namely (), the zero-element tuple. If you’ve encountered abstract algebra,
you’ll recognize the analogy to 0 being the identity element of sum and 1 of product.

6.3.4 Type Annotations

Julia provides the ability to attach a type annotation to a variable, using the notation v::T
for variable v and type T in local variable declarations and assignments. All assignments of
a value to a variable with a type annotation will be type-converted to the annotated type
if possible. (In Julia, a value v is converted to type T by calling convert(T,v).)

(function()
local x::Int64 = 0x02
local y = 0x02
@assert typeof(x) == Int64 # The UInt8 was converted
@assert typeof(y) == UInt8 # No annotations, no coversion

There�s no conversion from String to Int64
@assert isa(try x = "Oh no" catch (e) e end, Exception)

end)()

Type annotations may increase performance: a compiler can use knowledge that a variable
has a given type to create e�cient memory layout and run-time access code. Type annota-

Julia ⌅ 109

tions are completely optional in Julia. Some languages (e.g. Co�eeScript) have no notion of
type annotations, while some languages (e.g., Java, coming up in the next chapter) require
them for all variables.

6.3.5 Covariance, Contravariance, and Invariance

We’ve seen subtype-supertype relationships among simple, nonparameterized types, for ex-
ample Int64 <: Number (i.e., a 64-bit integer is a number). But what about parameterized,
union, and tuple types? Can we say anything about their subtype-supertype status based
on the types of their component types? For example, how are Set{Int64} and Set{Number}
related, if at all? First, some terminology:

• If Set{Int64} <: Set{Number}, sets would be covariant
• If Set{Number} <: Set{Int64}, sets would be contravariant
• If neither holds, sets would be invariant
• If both hold, sets would be bivariant

It turns out that in Julia, sets are invariant. Why are they not covariant? If they were,
we would be able to declare a variable a with declared type “set of animals” and assign
to it a value of type “set of dogs.” Since a is declared as a set of animals, it would appear
reasonable to add a cat to the set. But the underlying value of the variable is a set of dogs,
which cannot hold a cat. Invariance avoids this pitfall.
Tuples, on the other hand, are covariant:

t = (3, "hello")
@assert typeof(t) == Tuple{Int64, String}
@assert isa(t, Tuple{Real, String})
@assert isa(t, Tuple{Integer, AbstractString})
@assert isa(t, Tuple{Number, Any})

@assert Tuple{Symbol, Float16, Union{}} <: Tuple{Any, Real, Any}

The previous problem with sets does not arise because tuples are immutable.

6.4 MULTIPLE DISPATCH

Let’s turn now to functions and consider the following problem: how can we write a function
whose behavior depends on the types of its arguments? For example, consider a function
called times such that:

• If x and y are numbers, the function multiplies, e.g., times(8,3) ∆ 24
• If x is a string and y is an unsigned integer, we have repetition, e.g., times("ho",3)

∆ "hohoho"
• If x is a vector and y is a number, we have element-wise multiplication, e.g.,

times([1,2,3],3) ∆ [3,6,9]
• If x is a number and y is a vector, we also have element-wise multiplication, e.g.,

times(5,[1,2,3]) ∆ [5,10,15]

